Коэффициент теплопроводности материала. Теплопроводность строительных материалов: таблица

Строительство коттеджа или дачного дома – это сложный и трудоемкий процесс. И для того, чтобы будущее строение простояло не один десяток лет, нужно соблюдать все нормы и стандарты при его возведении. Поэтому каждый этап строительства требует точных расчетов и качественного выполнения необходимых работ.

Одним из самых важных показателей при строительстве и отделке строения является теплопроводность строительных материалов. СНИП (строительные нормы и правила) дает полный спектр информации по данному вопросу. Ее необходимо знать, чтобы будущее здание было комфортным для проживания как в летний, так и в зимний период.

Идеальный теплый дом

От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

Понятие теплопроводности

Теплопроводность – это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность – это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.

Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.

Коэффициент теплопроводности

Потеря тепла в доме неизбежна. Она происходит постоянно, когда температура снаружи меньше, чем в помещении. А вот ее интенсивность – это переменная величина. Она зависит от множества факторов, главными среди которых являются:

  • Площадь поверхностей, участвующих в теплообмене (крыша, стены, перекрытия, пол).
  • Показатель теплопроводности строительных материалов и отдельных элементов здания (окна, двери).
  • Разница между температурами на улице и внутри дома.
  • И другие.

Для количественной характеристики теплопроводности строительных материалов используют специальный коэффициент. Используя этот показатель, можно довольно просто рассчитать необходимую теплоизоляцию для всех частей дома (стены, крыша, перекрытия, пол). Чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Таким образом, для постройки теплого дома лучше применять материалы с более низким показателем этой величины.

Коэффициент теплопроводности строительных материалов, как и любых других веществ (жидких, твердых или газообразных), обозначается греческой буквой λ. Единицей его измерения является Вт/(м*°C). При этом расчет ведется на один квадратный метр стены толщиной в один метр. Разница температур здесь берется 1°. Практически в любом строительном справочнике имеется таблица теплопроводности строительных материалов, в которой можно посмотреть значение этого коэффициента для различных блоков, кирпичей, бетонных смесей, пород дерева и других материалов.

Определение потерь тепла

Потери тепла в любом здании всегда есть, но в зависимости от материала они могут изменять свое значение. В среднем потеря тепла происходит через:

  • Крышу (от 15 % до 25 %).
  • Стены (от 15 % до 35 %).
  • Окна (от 5 % до 15 %).
  • Дверь (от 5 % до 20 %).
  • Пол (от 10 % до 20 %).

Для определения потерь тепла применяют специальный тепловизор, который определяет наиболее проблемные места. Они выделяются на нем красным цветом. Меньшая потеря тепла происходит в желтых зонах, далее – в зеленых. Зоны с наименьшей потерей тепла выделяются синим цветом. А определение теплопроводности строительных материалов должно проводиться в специальных лабораториях, о чем должен свидетельствовать сертификат качества, прилагаемый к продукции.

Пример расчета потерь тепла

Если взять, к примеру, стену из материала с коэффициентом теплопроводности 1, то при разности температур с двух сторон этой стены в 1°, потери тепла составят 1 Вт. Если же толщину стены взять не 1 метр, а 10 см, то потери составят уже 10 Вт. В случае, если разность температур будет 10°, то тепловые потери также составят 10 Вт.

Рассмотрим теперь на конкретном примере расчет потери тепла целого здания. Высоту его возьмем 6 метров (8 с коньком), ширину – 10 метров, а длину – 15 метров. Для простоты расчетов берем 10 окон площадью 1 м2. Температуру внутри помещения будем считать равную 25°C, а на улице -15°C. Вычисляем площадь всех поверхностей, через которые происходит потеря тепла:

  • Окна – 10 м2.
  • Пол – 150 м2.
  • Стены – 300 м2.
  • Крыша (со скатами по длинной стороне) – 160 м2.

Формула теплопроводности строительных материалов позволяет вычислить коэффициенты для всех частей здания. Но проще использовать уже готовые данные из справочника. Там есть таблица теплопроводности строительных материалов. Рассмотрим каждый элемент по отдельности и определим его тепловое сопротивление. Оно рассчитывается по формуле R = d/λ, где d – толщина материала, а λ – коэффициент его теплопроводности.

Пол – 10 см бетона (R=0,058 (м2*°C)/Вт) и 10 см минеральной ваты (R=2,8 (м2*°C)/Вт). Теперь складываем эти два показателя. Таким образом, тепловое сопротивление пола равняется 2,858 (м2*°C)/Вт.

Аналогично считаются стены, окна и кровля. Материал – ячеистый бетон (газобетон), толщина 30 см. В таком случае R=3,75 (м2*°C)/Вт. Тепловое сопротивление пластового окна – 0,4 (м2*°C)/Вт.

Кровлю будем считать из минеральной ваты толщиной в 10 см и профлиста. Так как металл имеет высокий коэффициент теплопроводности, то профлист в расчет не берем. Тогда R крыши составит 2,8 (м2*°C)/Вт.

Следующая формула позволяет выяснить потери тепловой энергии.

Q = S * T / R, где S – площадь поверхности, T – разница температур снаружи и внутри (40°C). Рассчитаем потери тепла для каждого элемента:

  • Для крыши: Q = 160*40/2,8=2,3 кВт.
  • Для стен: Q = 300*40/3,75=3,2 кВт.
  • Для окон: Q = 10*40/0,4=1 кВт.
  • Для пола: Q = 150*40/2,858=2,1 кВт.

Далее все эти показатели суммируются. Таким образом, для данного коттеджа тепловые потери составят 8,6 кВт. А для поддержания оптимальной температуры потребуется котельное оборудование мощностью не менее 10 кВт.

Материалы для внешних стен

На сегодняшний день существует множество стеновых строительных материалов. Но наибольшей популярностью в частном домостроении по-прежнему пользуются строительные блоки, кирпичи и дерево. Основные отличия – это плотность и теплопроводность строительных материалов. Сравнение дает возможность выбрать золотую середину в соотношении плотность/теплопроводность. Чем выше плотность материала, тем выше его несущая способность, а следовательно, и прочность конструкции в целом. Но при этом ниже его тепловое сопротивление, а как следствие, расходы на энергоносители выше. С другой стороны, чем выше тепловое сопротивление, тем ниже плотность материала. Меньшая плотность, как правило, подразумевает наличие пористой структуры.

Чтобы взвесить все за и против, необходимо знать плотность материала и его коэффициент теплопроводности. Следующая таблица теплопроводности строительных материалов для стен дает значение этого коэффициента и его плотность.

Материал

Теплопроводность, Вт/(м*°C)

Плотность, т/м3

Железобетон

1,7

2,5

Керамзитобетонные блоки

0,14 – 0,66

0,5 – 1,8

Керамический кирпич

0,56

1,8

Силикатный кирпич

0,7

1,8

Газобетонные блоки

0,08 – 0,29

0,3 – 1

Сосна

0,18

0,5

Утеплители для стен

При недостаточной тепловой сопротивляемости внешних стен могут применяться различные утеплители. Так как значения теплопроводности строительных материалов для утепления могут иметь весьма низкий показатель, то чаще всего толщины в 5-10 см будет достаточно для создания комфортной температуры и микроклимата в помещениях. Широкое применение на сегодняшний день получили такие материалы, как минеральная вата, пенополистирол, пенопласт, пенополиуритан и пеностекло.

Следующая таблица теплопроводности строительных материалов, используемых для утепления наружных стен, дает значение коэффициента λ.

Материал

Теплопроводность, Вт/(м*°C)

Минеральная вата

0,048 – 0,07

Пенополистирол

0,031 – 0,05

Экструдированный пенополистирол

0,036

Пенополиуритан

0,02 – 0,041

Пеностекло

0,07 – 0,11

Особенности применения стеновых утеплителей

Применение утеплителей для наружных стен имеет некоторые ограничения. Это прежде всего связанно с таким параметром, как паропроницаемость. Если стена сделана из пористого материала, такого как газобетон, пенобетон или керамзитобетон, то применять лучше минеральную вату, так как этот параметр у них практически одинаковый. Использование пенополистирола, пенополиуритана или пеностекла возможно только при наличии специального вентиляционного зазора между стеной и утеплителем. Для дерева это также критично. А вот для кирпичных стен данный параметр не так критичен.

Теплая кровля

Утепление кровли позволяет избежать ненужных перерасходов при отоплении дома. Для этого могут применяться все виды утеплителей как листового формата, так и напыляемые (пенополиуритан). При этом не следует забывать про пароизоляцию и гидроизоляцию. Это весьма важно, так как мокрый утеплитель (минеральная вата) теряет свои свойства по тепловой сопротивляемости. Если же кровля не утепляется, то необходимо основательно утеплить перекрытие между чердаком и последним этажом.

Пол

Утепление пола весьма важный этап. При этом также необходимо применять пароизоляцию и гидроизоляцию. В качестве утеплителя используется более плотный материал. Он, соответственно, имеет более высокий коэффициент теплопроводности, чем кровельный. Дополнительной мерой для утепления пола может послужить подвал. Наличие воздушной прослойки позволяет повысить тепловую защиту дома. А оборудование системы теплого пола (водяного или электрического) дает дополнительный источник тепла.

Заключение

При строительстве и отделке фасада необходимо руководствоваться точными расчетами по тепловым потерям и учитывать параметры используемых материалов (теплопроводность, паропроницаемость и плотность).

Похожие статьи

image

image

Теплопотери сквозь конструкционные материалы

Теплопроводность является одним из способов потерь тепла жилыми помещениями. Эта характеристика выражается количеством тепла, способным проникнуть сквозь единицу площади материала (1 м2) за секунду при стандартной толщине слоя (1 м). Физики объясняют выравнивание температур различных тел, объектов путем теплопроводности природным стремлением к термодинамическому равновесию всех материальных веществ.

Таким образом, каждый индивидуальный застройщик, отапливая помещение в зимний период, получает потери тепловой энергии, уходящей из жилища сквозь наружные стены, полы, окна, кровлю. Чтобы сократить расход энергоносителя для обогрева помещений, сохранив внутри них комфортный для эксплуатации микроклимат, необходимо рассчитать толщину всех ограждающих конструкций на этапе проектирования. Это позволит сократить бюджет строительства.

Таблица теплопроводности строительных материалов позволяет использовать точные коэффициенты для стеновых конструкционных материалов. Нормативы СНиП регламентируют сопротивление фасадов коттеджа передаче тепла холодному воздуху улицы в пределах 3,2 единиц. Перемножив эти значения, можно получить необходимую толщину стены, чтобы определиться с количеством материала.

Например, при выборе ячеистого бетона с коэффициентом 0,12 единиц достаточно кладки в один блок длиной 0,4 м. используя более дешевые блоки из этого же материала с коэффициентом 0,16 единиц, потребуется сделать стену толще – 0,52 м. Коэффициент теплопроводности сосны, ели составляет 0,18 единиц. Поэтому, для соблюдения условия сопротивления теплопередаче 3,2, потребуется 57 см брус, которого не существует в природе. При выборе кирпичной кладки с коэффициентом 0,81 единица толщина наружных стен грозит увеличением до 2,6 м, железобетонных конструкций – до 6,5 м.

На практике стены изготавливают многослойными, закладывая внутрь слой утеплителя или обшивая теплоизолятором наружную поверхность. У этих материалов коэффициент теплопроводности гораздо ниже, что позволяет уменьшить толщину многократно. Конструкционный материал обеспечивает прочность здания, теплоизолятор снижает теплопотери до приемлемого уровня. Современные облицовочные материалы, используемые на фасадах, внутренних стенах, так же обладают сопротивлением теплопотерям. Поэтому, в расчетах учитываются все слои будущих стен.

Вышеуказанные расчеты будут неточными если не учесть наличие в каждой стене коттеджа светопрозрачных конструкций. Таблица теплопроводности строительных материалов в нормативах СНиП обеспечивает легкий доступ к коэффициентам теплопроводности данных материалов.

Пример расчета толщины стены по теплопроводности

При выборе типового или индивидуального проекта застройщик получает комплект документации, необходимый для возведения стен. Силовые конструкции в обязательном порядке просчитаны на прочность с учетом ветровых, снеговых, эксплуатационных, конструкционных нагрузок. Толщина стен учитывает характеристики материала каждого слоя, поэтому, теплопотери гарантированно будут ниже допустимых норм СНиП. В этом случае заказчик может предъявить претензии организации, занимавшейся проектированием, при отсутствии необходимого эффекта в процессе эксплуатации жилища.

Однако, при строительстве дачи, садового домика многие владельцы предпочитают экономить на приобретении проектной документации. В этом случае расчеты толщины стен можно произвести самостоятельно. Специалисты не рекомендуют пользоваться сервисами на сайтах компаний, реализующих конструкционные материалы, утеплители. Многие из них завышают в калькуляторах значения коэффициентов теплопроводности стандартных материалов для представления собственной продукции в выгодном свете. Подобнее ошибки в расчетах чреваты для застройщика снижением комфортности внутренних помещений в холодный период.

Самостоятельный расчет не представляет сложностей, используется ограниченное количество формул, нормативных значений:

  • теплосопротивление стены – 3,5 либо больше этого числа (согласно СНиП), является суммой теплосопротивлений всех слоев, из которых состоит несущая стена
  • коэффициент теплопроводности строительных материалов – каждый производитель конструкционного материала, светопрозрачных конструкций, утеплителя указывает его в обязательном порядке, однако, лучше дополнительно свериться с таблицей в нормативах СНиП
  • теплосопротивление отдельного слоя стены – вычисляется путем умножения толщины слоя (м) на коэффициент теплопроводности материала

Например, чтобы привести толщину кирпичной стены в соответствие с нормативным теплосопротивлением, потребуется умножить коэффициент для этого материала, взятый из таблицы на нормативное теплосопротивление:

0,76 х 3,5 = 2,66 м

Подобная крепость излишне затратна для любого застройщика, поэтому, следует снизить толщину кладки до приемлемых 38 см, добавив утеплитель:

  • облицовка в полкирпича 12,5 см
  • внутренняя стена в кирпич 25 см

Теплосопротивление кирпичной кладки в этом случае составит 0,38/0,76 = 0,5 единиц. Вычитая из нормативного параметра полученный результат, получаем необходимое теплосопротивление слоя утеплителя:

3,5 – 0,5 = 3 единицы

При выборе базальтовой ваты с коэффициентом 0,039 единиц, получаем слой толщиной:

3 х 0,039 = 11,7 см

Отдав предпочтение экструдированному пенополистиролу с коэффициентом 0,037 единиц, снижаем слой утеплителя до:

3 х 0,037 = 11,1 см

На практике, можно выбрать 12 см для гарантированного запаса либо обойтись 10 см, учитывая наружные, внутренние облицовки стен, так же обладающие теплосопротивлением. Необходимый запас можно добрать без использования конструкционных материалов либо утеплителей, изменив конструкцию кладки. Замкнутые пространства воздушных прослоек внутри некоторых типов облегченных кладок так же обладают теплосопротивлением.

Их теплопроводность можно узнать из нижеприведенной таблицы, находящейся в СНиП.

Например, 10 см прослойка замкнутого контура обеспечивает теплоспопротивление 0,18 либо 0,15 единиц при отрицательных, положительных температурах, соответственно. Сантиметровый воздушный зазор добавляет несущей стене 0,15 или 0,13 единиц теплосопротивления (зимой, летом, соответственно).

Что такое «точка росы»

На завершающем этапе вычислений потребуется правильно расположить утеплитель, коробки оконных блоков в толще стен. Это необходимо для смещения точки росы наружу, в противном случае избавиться от влаги на стеклах, внутренних стенах с началом отопительного сезона не получится.

Точкой росы называют температурный барьер, при достижении которого из теплого воздуха в эксплуатируемом помещении, имеющим высокую относительную влажность, начинает конденсироваться вода. Для увеличения ресурса силовых конструкций точку росы необходимо вывести за наружную поверхность стены, чтобы кирпич. Древесина, бетон не разрушался под действием влаги.

Кроме того, смещение точки росы внутрь слоя утеплителя приведет к увеличению расхода энергоносителя для обогрева жилища уже на третий сезон эксплуатации. Тплоизолятор намокнет, снизится его теплосопротивление.

Неправильная установка оконных блоков приводит к аналогичной ситуации – откосы будут стабильно влажными всю зиму. Поэтому, нормативы СНиП рекомендуют смещение внутренней плоскости оконного блока:

  • заподлицо с внутренней стеной в срубах, кирпичных коттеджах с кладкой в 1,5 кирпича
  • отступ от наружной плоскости стены от 12,5 см при значительной толщине кладки

Выбор конструкционных, облицовочных, теплоизоляционных материалов должен осуществляться комплексно. Паропропускная способность отдельных слоев стены должна снижаться изнутри наружу. Принцип этого метода становится понятнее на простом примере:

  • если облицевать фасады коттеджа, выложенные из газобетонных блоков, керамическим кирпичом, клинкером без вентиляционного зазора
  • влажный воздух из помещений свободно преодолеет материал стены, будет остановлен облицовкой
  • блоки начнут разрушаться в агрессивной среде, снизится ресурс здания

Кроме того, замерзающая нутрии блоков вода будет расширяться, дополнительно разрушая кладку, ослабляя силовой каркас коттеджа. Проблема решается заменой керамики на сайдинг, деревянные облицовки либо созданием вентиляционного зазора, через который влага сможет отводиться воздушными массами.

Присоединяйтесь к обсуждению! Нам было бы интересно узнать вашу точку зрения, оставьте свое мнение в комментариях &#x1f63c Понравился пост? Поделись с друзьями!

Термин «теплопроводность» применяется к свойствам материалов пропускать тепловую энергию от горячих участков к холодным. Теплопроводность основана на движении частиц внутри веществ и материалов. Способность передавать энергию тепла в количественном измерении – это коэффициент теплопроводности. Круговорот тепловой энергопередачи, или тепловой обмен, может проходить в любых веществах с неравнозначным размещением разных температурных участков, но коэффициент теплопроводности зависим от давления и температуры в самом материале, а также от его состояния – газообразного, жидкого или твердого.

Эквивалентная теплопроводимость строительных материалов и утеплителей

Физически теплопроводность материалов равняется количеству тепла, которое перетекает через однородный предмет установленных габаритов и площади за определенный временной отрезок при установленной температурной разнице (1 К). В системе СИ единичный показатель, который имеет коэффициент теплопроводности, принято измерять в Вт/(м•К).

Содержание

Как рассчитать теплопроводность по закону Фурье

В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:

q = − ϰ х grad х (T), где:

  • q – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
  • ϰ – удельный коэффициент теплопроводности материала;
  • T – температура материала.
Перенос тепла в неравновесной термодинамической системе

Знак «-» в формуле перед «ϰ» указывает, что тепло движется в противоположном направлении от вектора grad х (T)/ – в направлении уменьшения температуры предмета. Эта формула отражает закон Фурье. В интегральном выражении коэффициент теплопередачи согласно закону Фурье будет выглядеть как формула:

  • P = − ϰ х S х ΔT / l, выражается в (Вт/(м•К) х (м2•К) / м = Вт/(м•К) х (м•К) = Вт), где:
  • P ­– общая мощность потерь теплоотдачи;
  • S – сечение предмета;
  • ΔT – разница температуры по стыкам сторон предмета;
  • l – расстояние между стыками сторон предмета – длина фигуры.
Связь коэффициента теплопроводимости с электропроводностью материалов

Электропроводность и коэффициент теплопередачи

Собственно, коэффициент теплопроводности металлов «ϰ» связан с их удельной электропроводимостью «σ» согласно закону Видемана-Франца, в соответствии с которым коэффициент теплопроводности металлов зависит от удельной электропроводимости прямо пропорционально температуре:

Κ / σ = π2 / 3 х (К / e)2 х T, где:

  • К – постоянный коэффициент Больцмана, устанавливающий закономерность между тепловой энергией тела и его температурой;
  • e – заряд электрона;
  • T – термодинамическая температура предмета.

” alt=””>

Коэффициент теплопроводности газовой среды

В газовой среде коэффициент теплопроводности воздуха может рассчитываться по приблизительной формуле:

ϰ ~ 1/3 х p х cv х Λλ х v, где:

  • pv – плотность газовой среды;
  • cv – удельная емкость тепловой энергии при одном и том же объеме тела;
  • Λλ – расстояние свободного перемещения молекул в газовой среде;
  • v – скорость передачи тепла.
Что такое теплопроводимость

Или:

ϰ = I x К / 3 x π3/3 x d2 √ RT / μ, где:

  • i – результат суммирования уровней свободы прямого движения и вращения молекул в газовой среде (для 2-атомных газов i=5, для 1-атомных i=3;
  • К – коэффициент Больцмана;
  • μ – отношение массы газа к количеству молей газа;
  • T – термодинамическая температура;
  • d – ⌀ молекул газа;
  • R – универсальный коэффициент для газовой среды.

Согласно формуле минимальная теплопроводность материалов существует у тяжелых инертных газов, максимально эффективная теплопроводность строительных материалов – у легких.

” alt=””>

Теплопроводимость в газовой разреженной среде

Газовая среда и теплопроводность

Результат по выкладкам выше, по которым делают расчет теплопроводности для газовой среды, от давления не зависит. Но в очень разреженной газовой среде расстояние свободного перемещения молекул зависит не от столкновений частиц, а от препятствий в виде стен резервуара. При этом ограничение перемещения молекул в соответствующих единицах измерения называют высоковакуумной средой, при которой степень теплообмена уменьшается в зависимости от плотности материала и прямо пропорциональна значению давления в резервуаре:

ϰ ~ 1/3 х p х cv х l х v, где:

i – объем резервуара;

Р – уровень давления в резервуаре.

Согласно этой формуле теплопроводность в вакуумной среде стремится к нулевой отметке при глубоком вакууме. Это объясняется тем, что в вакууме частицы, которые передают тепловую энергию, имеют низкую плотность на единицу площади. Но тепловая энергия в вакуумной среде перетекает посредством излучения. В качестве примера можно привести обычный термос, в котором для уменьшения потерь тепловой энергии стенки должны быть двойными и посеребренными, без воздуха между ними.

Что такое тепловое излучение

При применении закона Фурье не принимают во внимание инерционность перетекания тепловой энергии, а это значит, что имеется в виду мгновенная передача тепла из любой точки на любое расстояние. Поэтому формулу нельзя использовать для расчетов передачи тепла при протекании процессов, имеющих высокую частоту повторения. Это ультразвуковое излучение, передача тепловой энергии волнами ударного или импульсного типа и т.д. Существует решение по закону Фурье с релаксационным членом:

τ х ∂q / ∂t = − (q + ϰ х ∇T) .

Если ре­лак­са­ция τ мгновенная, то формула превращается в закон Фурье.

Ориентировочная таблица теплопроводности материалов:

Основа Значение теплопроводности, Вт/(м•К)
Жесткий графен 4840 +/ 440 – 5300 +/ 480
Алмаз 1001-2600
Графит 278,4-2435
Бора арсенид 200-2000
SiC 490
Ag 430
Cu 401
BeO 370
Au 320
Al 202-236
AlN 200
BN 180
Si 150
Cu3Zn2 97-111
Cr 107
Fe 92
Pt 70
Sn 67
ZnO 54
 Черная сталь 47-58
Pb 35,3
Нержавейка Теплопроводность стали – 15
SiO2 8
Высококачественные термостойкие пасты 5-12
Гранит

(состоит из SiO2 68-73 %; Al2O3 12,0-15,5 %; Na2O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe2O3 0,5-2,5 %; К2О 0,5-3,0 %; MgO 0,1-1,5 %; TiO2 0,1-0,6 %)

2,4
Бетонный раствор без заполнителей 1,75
Бетонный раствор со щебнем или с гравием 1,51
Базальт

(состоит из SiO2 – 47-52%, TiO2 – 1-2,5%, Al2O3 – 14-18%, Fe2O3 – 2-5%, FeO – 6-10%, MnO – 0,1-0,2%, MgO – 5-7%, CaO – 6-12%, Na2O – 1,5-3%, K2O – 0,1-1,5%, P2O5 – 0,2-0,5 %)

1,3
Стекло

(состоит из SiO2, B2O3, P2O5, TeO2, GeO2, AlF3 и т.д.)

1-1,15
Термостойкая паста КПТ-8 0,7
Бетонный раствор с наполнителем из песка, без щебня или гравия 0,7
Вода чистая 0,6
Силикатный

или красный кирпич

0,2-0,7
Масла

на основе силикона

0,16
Пенобетон 0,05-0,3
Газобетон 0,1-0,3
Дерево Теплопроводность дерева – 0,15
Масла

на основе нефти

0,125
Снег 0,10-0,15
ПП с группой горючести Г1 0,039-0,051
ЭППУ с группой горючести Г3, Г4 0,03-0,033
Стеклянная вата 0,032-0,041
Вата каменная 0,035-0,04
Воздушная атмосфера (300 К, 100 кПа) 0,022
Гель

на основе воздуха

0,017
Аргон (Ar) 0,017
Вакуумная среда

Приведенная таблица теплопроводности учитывает теплопередачу посредством теплового излучения и теплообмена частиц. Так как вакуум не передает тепло, то оно перетекает при помощи солнечного излучения или другого типа генерации тепла.  В газовой или жидкой среде слои с разной температурой смешиваются искусственно или естественным способом.

Таблица теплопроводимости стройматериалов

Проводя расчет теплопроводности стены, необходимо принимать во внимание, что теплопередача сквозь стеновые поверхности меняется от того, что температура в здании и на улице всегда разная, и зависит от площади всех поверхностей дома и от теплопроводности стройматериалов.

Чтобы количественно оценить теплопроводность, ввели такое значение, как коэффициент теплопроводности материалов. Он показывает, как тот или иной материал способен передавать тепло. Чем выше это значение, например, коэффициент теплопроводности стали, тем эффективнее сталь будет проводить тепло.

  • При утеплении дома из древесины рекомендуется выбирать стройматериалы с низким коэффициентом.
  • Если стена кирпичная, то при значении коэффициента 0,67 Вт/(м2•К) и толщине стены 1 м при ее площади 1 м2 при разнице наружной и внутридомовой температуры 1 С кирпич будет пропускать 0,67 Вт энергии. При разнице температур 10 С кирпич будет пропускать 6,7 Вт и т.д.

Стандартное значение коэффициента теплопроводимости теплоизоляции и других строительных материалов верно для толщины стены 1 м. Чтобы провести расчет теплопроводности поверхности другой толщины, следует коэффициент поделить на выбранное значение толщины стены (метры).

Ориентировочные показатели коэффициентов теплопроводимости

В СНиП и при проведении расчетов фигурирует термин «тепловое сопротивление материала», он означает обратную теплопроводность. То есть при теплопроводности листа пенопласта 10 см и его теплопроводности 0,35 Вт/(м2•К) тепловое сопротивление листа – 1 / 0,35 Вт/(м2•К) = 2,85 (м2•К)/Вт.

Ниже – таблица теплопроводности для востребованных строительных материалов и теплоизоляторов:

Стройматериалы Коэффициент теплопроводимости, Вт/(м2•К)
Плиты из алебастра 0,47
Al 230
Шифер асбоцементный 0,35
Асбест (волокно, ткань) 0,15
Асбоцемент 1,76
Асбоцементные изделия 0,35
Асфальт 0,73
Асфальт для напольного покрытия 0,84
Бакелит 0,24
Бетон с заполнителем щебнем 1,3
Бетон с заполнителем песком 0,7
Пористый бетон – пено- и газобетон 1,4
Сплошной бетон 1,75
Термоизоляционный бетон 0,18
Битумная масса 0,47
Бумажные материалы 0,14
Рыхлая минвата 0,046
Тяжелая минвата 0,05
Вата – теплоизолятор на основе хлопка 0,05
Вермикулит в плитах или листах 0,1
Войлок 0,046
Гипс 0,35
Глиноземы 2,33
Гравийный заполнитель 0,93
Гранитный или базальтовый заполнитель 3,5
Влажный грунт, 10% 1,75
Влажный грунт, 20% 2,1
Песчаники 1,16
Сухая почва 0,4
Уплотненный грунт 1,05
Гудроновая масса 0,3
Доска строительная 0,15
Фанерные листы 0,15
Твердые породы дерева 0,2
ДСП 0,2
Дюралюминиевые изделия 160
Железобетонные изделия 1,72
Зола 0,15
Известняковые блоки 1,71
Раствор на песке и извести 0,87
Смола вспененная 0,037
Природный камень 1,4
Картонные листы из нескольких слоев 0,14
Каучук пористый 0,035
Каучук 0,042
Каучук с фтором 0,053
Керамзитобетонные блоки 0,22
Красный кирпич 0,13
Пустотелый кирпич 0,44
Полнотелый кирпич 0,81
Сплошной кирпич 0,67
Шлакокирпич 0,58
Плиты на основе кремнезема 0,07
Латунные изделия 110
2,21
2,44
Лиственное дерево при влажности 15% 0,15
Медные изделия 380
Мипора 0,086
Опилки для засыпки 0,096
Сухие опилки 0,064
ПВХ 0,19
Пенобетон 0,3
Пенопласт марки ПС-1 0,036
Пенопласт марки ПС-4 0,04
Пенопласт марки ПХВ-1 0,05
Пенопласт марки ФРП 0,044
ППУ марки ПС-Б 0,04
ППУ марки ПС-БС 0,04
Лист из пенополиуретана 0,034
Панель из пенополиуретана 0,024
Облегченное пеностекло 0,06
Тяжелое вспененное стекло 0,08
Пергаминовые изделия 0,16
Перлитовые изделия 0,051
Плиты на цементе и перлите 0,085
Влажный песок 0% 0,33
Влажный песок 0% 0,97
Влажный песок 20% 1,33
Обожженный камень 1,52
Керамическая плитка 1,03
Плитка марки ПМТБ-2 0,035
Полистирол 0,081
Поролон 0,04
Раствор на основе цемента без песка 0,47
Плита из натуральной пробки 0,042
Легкие листы из натуральной пробки 0,034
Тяжелые листы из натуральной пробки 0,05
Резиновые изделия 0,15
Рубероид 0,17
Сланец 2,100
Снег 1,5
Хвойная древесина влажностью 15% 0,15
Хвойная смолистая древесина влажностью 15% 0,23
Стальные изделия 52
Стеклянные изделия 1,15
Утеплитель стекловата 0,05
Стекловолоконные утеплители 0,034
Стеклотекстолитовые изделия 0,31
Стружка 0,13
Тефлоновое покрытие 0,26
Толь 0,24
Плита на основе цементного раствора 1,93
Цементно-песчаный раствор 1,24
Чугунные изделия 57
Шлак в гранулах 0,14
Шлак зольный 0,3
Шлакобетонные блоки 0,65
Сухие штукатурные смеси 0,22
Штукатурный раствор на основе цемента 0,95
Эбонитовые изделия 0,15
Влажность и теплопроводимость – зависимость

Кроме того, необходимо учитывать теплопроводность утеплителей из-за их струйных тепловых потоков. В плотной среде возможно «переливание» квазичастиц из одного нагретого стройматериала в другой, более холодный или более теплый, через поры субмикронных размеров, что помогает распространять звук и тепло, даже если в этих порах  будет абсолютный вакуум.

” alt=””>

image

Разные материалы имеют различную теплопроводность, и чем она ниже, тем меньше теплообмен внутренней среды обитания с внешней. Это значит, что зимой в таком доме сохраняется тепло, а летом – прохлада

Теплопроводность — количественная характеристика способности тел к проведению тепла. Для того чтобы иметь возможность сравнения, а также точных расчетов при строительстве, представляем цифры в таблице теплопроводности, а также прочности, паропроницаемости большинства строительных материалов.

Содержание

Понятия ↑

Выделяют следующие виды теплообменных процессов:

  1. теплопроводность;
  2. конвекция;
  3. тепловое излучение.

Теплопроводность — это перенос на молекулярном уровне тепла между телами либо частицами одного и того же тела, имеющими разные температуры, когда происходит достаточно активный обмен двигательной энергией молекул, атомов и свободных электронов, т. е. мельчайших частиц тела.

Данный процесс осуществляется передвигающимися в хаотическом порядке структурными частицами тел (подразумеваются молекулы, атомы и т.п.). Подобный обмен тепла происходит в любом физическом теле, имеющем неоднородное распределение температур. Сам же механизм теплопередачи так или иначе зависит от того, в каком агрегатном состоянии вещество находится в текущий момент.

Тепловое излучение — перенос энергии от одного тела к иному телу, происходящий при посредстве электромагнитных волн.

image

Чтобы достичь такого же тепла в доме из кирпича, какое дает деревянный сруб, толщина кирпичных стен должна превышать в три раза толщину стен постройки из дерева

Процесс совместного переноса тепла способом конвекции и теплопроводности именуют конвективным теплообменом. Теплоотдача — по своей сути конвективный теплообмен между перемещающейся средой и неподвижной (твердой) стеной.  Теплоотдача нередко сопровождается тепловым излучением. Перенос тепла в таком случае осуществляется совместно посредством таких процессов, как теплопроводность, конвекция и тепловое излучение.

Происходит перенос вещества, так называемый массообмен, проявляющийся в равновесной  концентрации вещества.

Совместное одновременное течение процессов теплообмена и массообмена называют тепломассообменом.

Теплопроводность выражается в тепловом перемещении мельчайших частиц тел. Явление теплопроводности можно наблюдать как в твердых телах, так и в неподвижных газах, и в жидкостях при условии, что в них не возникают конвективные токи. При возведении разного рода конструкций, включая жилые дома, необходимы знания о теплопроводности строительных материалов, в том числе таких, как минеральная вата, пенополистирол, пенополиуретан и др.

Коэффициент теплопроводности ↑

image

Показателем теплопроводности материалов служит коэффициент теплопроводности

Говоря о теплопроводности, также имеют в виду количественные  характеристики способности тел к проведению тепла. Способность того или иного вещества проводить тепло различна. Ее измеряют такой единицей, как коэффициент теплопроводности, означающем удельную теплопроводность.  В численном выражении данная характеристика равняется количеству тепла, проходящего сквозь тот или материал толщиною в 1 м и площадью 1 кв.м/сек при единичном температурном диапазоне.

Прежде предполагалось, что тепловая энергия передается в зависимости от перетекания  теплорода тел от одного к другому. Впрочем, впоследствии опыты опровергли само понятие теплорода в качестве самостоятельного вида материи. В наше время считается, что явление теплопроводности обусловлено естественным  стремлением объектов к состоянию, максимально близкому к термодинамическому равновесию, что и проявляется выравниванием их температур.

Коэффициент теплопроводности вакуума ↑

Таблица теплопроводности ↑

Материал Плотность, кг/м3 Теплопроводность, Вт/(м*С) Эквивалентная1(при сопротивлении теплопередаче = 4,2м2*С/Вт)   толщина, м Эквивалентная2(при сопротивление паропроницанию =1,6м2*ч*Па/мг) толщина, м
Железобетон 2500 1.69 0.03 7.10 0.048
Бетон 2400 1.51 0.03 6.34 0.048
Керамзитобетон 1800 0.66 0.09 2.77 0.144
Керамзитобетон 500 0.14 0.30 0.59 0.48
Кирпич красный глиняный 1800 0.56 0.11 2.35 0.176
Кирпич, силикатный 1800 0.70 0.11 2.94 0.176
Кирпич керамический пустотелый (брутто1400) 1600 0.41 0.14 1.72 0.224
Кирпич керамический пустотелый (брутто 1000) 1200 0.35 0.17 1.47 0.272
Пенобетон 1000 0.29 0.11 1.22 0.176
Пенобетон 300 0.08 0.26 0.34 0.416
Гранит 2800 3.49 0.008 14.6 0.013
Мрамор 2800 2.91 0.008 12.2 0.013
Сосна, ель поперек волокна 500 0.09 0.06 0.38 0.096
Дуб поперек волокна 700 0.10 0.05 0.42 0.08
Сосна, ель вдоль волокна 500 0.18 0.32 0.75 0.512
Дуб вдоль волокна 700 0.23 0.30 0.96 0.48
Фанера 600 0.12 0.02 0.50 0.032
ДСП 1000 0.15 0.12 0.63 0.192
Пакля 150 0.05 0.49 0.21 0.784
Гипсокартон 800 0.15 0.075 0.63 0.12
Картон облицовочный 1000 0.18 0.06 0.75 0.096
Минвата 200 0.070 0.49 0.30 0.784
Минвата 100 0.056 0.56 0.23 0.896
Минвата 50 0.048 0.60 0.20 0.96
Пенополистирол экструдированный 33 0.031 0.013 0.13 0.021
Пенополистирол экструдированный 45 0.036 0.013 0.13 0.021
Пенополистирол 150 0.05 0.05 0.21 0.08
Пенополистирол 100 0.041 0.05 0.17 0.08
Пенополистирол 40 0.038 0.05 0.16 0.08
Пенопласт ПВХ 125 0.052 0.23 0.22 0.368
Пенополиуретан 80 0.041 0.05 0.17 0.08
Пенополиуретан 60 0.035 0.0 0.15 0.08
Пенополиуретан 40 0.029 0.05 0.12 0.08
Пенополиуретан 30 0.020 0.05 0.09 0.08
Керамзит 800 0.18 0.21 0.75 0.336
Керамзит 200 0.10 0.26 0.42 0.416
Песок 1600 0.35 0.17 1.47 0.272
Пеностекло 400 0.11 0.02 0.46 0.032
Пеностекло 200 0.07 0.03 0.30 0.048
АЦП 1800 0.35 0.03 1.47 0.048
Битум 1400 0.27 0.008 1.13 0.013
Полиуретановая мастика 1400 0.25 0.00023 1.05 0.00036
Полимочевина 1100 0.21 0.00023 0.88 0.00054
Рубероид, пергамин 600 0.17 0.001 0.71 0.0016
Полиэтилен 1500 0.30 0.00002 1.26 0.000032
Асфальтобетон 2100 1.05 0.008 4.41 0.0128
Линолеум 1600 0.33 0.002 1.38 0.0032
Сталь 7850 58 243
Алюминий 2600 221 928
Медь 8500 407 1709
Стекло 2500 0.76 3.19

Тест на теплопроводность ↑

Видео: Теплопроводность металла и дерева ↑

Видео: Теплопроводность газов. Воздух. Бутан ↑

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий