Заземление и зануление электроустановок, разновидности (TN-C,TN-S,TN-C-S,TT,TI), достоинства и недостатки

image Любая электроустановка состоит не только из проводников электрического тока. Они помещаются в корпуса и оболочки, закрыты кожухами. Между токоведущими частями корпусами, в которых они находятся или на которых расположены, размещаются изоляционные материалы.

Содержание

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком, нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

image Система заземления TN-C

В этой конструкции нет ничего нового. Она была такой долгие годы.

Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки. Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN. Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник».

В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю.

Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе.

Так исчезает столь необходимая связь с заземляющим устройством.

Даже, если имеется повторное заземление PEN-проводника на вводе в здание.

Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления.

А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В.

Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку?

Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее о системе TN-C можно почитать в отдельной статье.

Система заземления TN-S

Отличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления.

В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям?

Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования.

Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности.

Правда, в силовые кабельные линии добавилась лишняя жила. Ну что же – за безопасность надо платить.

Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления.

Подробнеео системе TN-S можно почитать в отдельной статье.

Система заземления TN-C-S.

Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию.

Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам.

Суть в разделении проводника PEN на два: рабочий и защитный.

Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка.

Подробнее о системе TN-C-S можно почитать в отдельной статье.

Почему к РЕ?

Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности.

К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать.

При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так.

Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C.

Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником.

Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка.

Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей.

Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Подробнеео системе TT можно почитать в отдельной статье.

Система заземления IT

А здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети.

Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда.

А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке.

Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению.

Привет, друзья.  Сегодня поговорим о том, что такое заземление электроустановок и что такое зануление электроустановок. Как не допустить поражение человека электрическим током. Рассмотрим некоторые термины, понятия, которые используются при изготовлении защитного заземления и зануления. Также интересная новость. Читайте полностью.

Что случиться с человеком, если он прикоснется к  токопроводящей части?

Если человек дотронется до токопроводящих элементов оборудования, в момент их нахождения под напряжением, его может поразить электрическим током. Тоже самое может произойти при прикосновении к металлическим деталям или корпусу, которые могут случайно оказаться под напряжением из-за нарушения изоляции.

Поражение электрическим током, как правило, представляет собой электрическую травму в виде ожога, или электрический удар.

Электрический удар может сопровождаться потерей сознания, остановкой дыхания, кровообращения, в некоторых случаях, смертью.

Меры, позволяющие не допустить поражение человека электрическим током. 

Для того, чтобы не попасть под напряжение, необходимо исключить любую возможность прикосновения к токоведущим частям конструкций, оборудования. Для этого их устанавливают на высоте, либо ограждают.

Для безопасности людей, чья деятельность связана с нахождением вблизи электрических установок, все металлические элементы оборудования заземляют или зануляют.

Защитное заземление и защитное зануление

Что такое заземление электроустановок?

Защитное заземление, это специальное соединение металлических нетоковедущих частей оборудования (корпуса например) с землей. Это делается при помощи заземлителя и заземляющих проводников.

Что такое зануление электроустановок?

Защитное зануление, это специальное соединение металлических нетоковедущих частей оборудования с глухозаземлённой нейтралью генератора или трансформатора.

Жилу провода, кабеля защитного заземления принято маркировать желто-зеленым цветом. Жилу зануления, голубым.

Заземление электроустановок и зануление электроустановок

При изготовлении и расчетах защитного заземления, зануления, применяют следующие термины и понятия:

Заземлитель – металлический проводник (провод, кабель итп) или группа проводников находящихся в непосредственном контакте с землей.

Заземляющий проводник – проводник из меди или алюминия, при помощи которого заземляемые элементы оборудования соединяются с заземлителем.

Заземляющее устройство – комплекс, который включат в себя заземляющий проводник, заземлитель.

Сопротивление заземляющего устройства – сумма сопротивления заземлителя (относительно земли) и заземляющих проводников.

Замыкание на землю – не специальное соединение элементов электроустановки, находящихся под напряжением, с землей либо элементами которые неизолированны от земли.

Замыкание на корпус — то же, что и замыкание на землю, только на корпус.

Ток замыкания на землю – электрический ток, входящий в землю вместе замыкания.

Электроустановки с большими токами замыкания на землю – электроустановки работающие от напряжения 1000 и более Вольт, сила однофазного тока замыкания на землю около 500 Ампер, и более.

Электроустановки с малыми токами замыкания на землю – тоже более 1000 В, но ток замыкания на землю максимум 500 А.

Глухозаземленная нейтраль – это нейтраль трансформатора или генератора, которая присоединена к заземляющей конструкции непосредственно или через небольшое сопротивление.

Изолированная нейтраль – не присоединяется к заземляющему устройству, или соединяются при помощи аппаратов, которые будут компенсировать емкостный ток в сети.

Нулевой рабочий проводник, в электроустановках до 1000 Вольт – используется для запитывания электроприемника. Соединяется с глухозаземленной нейтралью трансформатора или генератора и глухозаземленным выводом источника однофазного тока. Или со средней глухозаземленной точкой постоянного источника тока.

Нулевой защитный проводник, в электроустановках до 1000 В – при помощи нулевого проводника, соединяют зануляемые элементы с глухозаземленной нейтралью трансформатора или генератора.

Вроде все Защитное заземление и защитное зануление разобрали, если есть вопросы, спрашивайте в комментариях.  Теперь небольшая новость:

Столько праздников в Январе, со всеми и не поздравить. Зародилась у меня мысль – марафон по разгадыванию кроссвордов. Разумеется с призами. Когда? Точной даты пока не скажу, так как кроссворд еще составляется (не все так просто), но в ближайшие 2-3 поста. чтобы не пропустить.

Анекдот от проекта:

Бизнес электрика. Наверно очень трудно развивать свой бизнес, если твоя фамилия – Шарашкин )))

Читайте также:

Теперь вы знаете, что такое заземление электроустановок и что такое зануление электроустановок. Скоро на экране – какие бывают системы заземления. Оставайтесь на связи.

P.S. Пригодилась статья?, благодарить не надо, лучше поделитесь ссылкой с друзьями в социальных сетях. Также приветствуются дополнения.

  Рубрика: Заметки электрика В  Grandars.ru В» Безопасность жизнедеятельности В» Основы Безопасности жизнедеятельности В» Содержание

Защитное заземление

Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Цель защитного заземления — снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам.

Применяется также заземление электрооборудования, зданий и сооружений для защиты от действия атмосферного электричества.

Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше — с любым режимом нейтрали.

Заземляющее устройство

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Различают естественные и искусственные заземлители.

Для заземляющих устройств в первую очередь должны быть использованы естественные заземлители:

  • водопроводные трубы, проложенные в земле;
  • металлические конструкции зданий и сооружений, имеющие
  • надежное соединение с землей;
  • металлические оболочки кабелей (кроме алюминиевых);
  • обсадные трубы артезианских скважин.

Запрещается в качестве заземлителей использовать трубопроводы с горючими жидкостями и газами, трубы теплотрасс.

Естественные заземлители должны иметь присоединение к заземляющей сети не менее чем в двух разных местах.

В качестве искусственных заземлителей применяют:

  • стальные трубы диаметром 3-5 см, толщиной стенок 3,5 мм,
  • длиной 2-3 м;
  • полосовую сталь толщиной не менее 4 мм;
  • угловую сталь толщиной не менее 4 мм;
  • прутковую сталь диаметром не менее 10 мм, длиной до 10 м и более.

Для искусственных заземлителей в агрессивных почвах (щелочных, кислых и др.), где они подвергаются усиленной коррозии, применяют медь, омедненный или оцинкованный металл.

В качестве искусственных заземлителей нельзя применять алюминиевые оболочки кабелей, а также голые алюминиевые проводники, так как в почве они окисляются, а окись алюминия — это изолятор.

Каждый отдельный проводник, находящийся в контакте с землей, называется одиночным заземлителем, или электродом. Если заземлитель состоит из нескольких электродов, соединенных между собой параллельно, он называется групповым заземлителем.

Для погружения в землю вертикальных электродов предварительно роют траншею глубиной 0,7-0,8 м, после чего забивают трубы или уголки с помощью механизмов. Стальные стержни диаметром 10-12 мм заглубляют в землю с помощью специального приспособления, а более длинные — с помощью вибратора. Верхние концы погруженных в землю вертикальных электродов соединяют стальной полосой методом сварки.

Устройство защитного заземления может быть осуществлено двумя способами: контурным расположением заземляющих проводников и выносным.

При контурном размещении заземлителей обеспечивается выравнивание потенциалов при однофазном замыкании на землю. Кроме того, благодаря взаимному влиянию заземлителей уменьшается напряжение прикосновения и напряжение шага в защищаемой зоне. Выносные заземления этими свойствами не обладают. Зато при выносном способе размещения есть выбор места для заглубления заземлителей.

В помещениях заземляющие проводники следует располагать таким образом, чтобы они были доступны для осмотра и надежно защищены от механических повреждений. На полу помещений заземляющие проводники укладывают в специальные канавки. В помещениях, где возможно выделение едких паров и газов, а также с повышенной влажностью заземляющие проводники прокладывают вдоль стен на скобах в 10 мм от стены.

Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается .

Сопротивление заземляющего устройства представляет собой сумму сопротивлений заземлителя относительно земли и заземляющих проводников.

Сопротивление заземлителя относительно земли есть отношение напряжения на заземлителе к току, проходящему через заземлитель в землю.

Величина сопротивления заземлителя зависит от удельного сопротивления грунта, в котором заземлитель находится; типа размеров и расположения элементов, из которых заземлитель выполнен; количества и взаимного расположения электродов.

Величина сопротивления заземлителей может изменяться в несколько раз в зависимости от времени года. Наибольшее сопротивление заземлители имеют зимой при промерзании грунта и в засушливое время.

Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом — при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом — во всех остальных случаях.

Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.

В установках свыше 1000 В допускается сопротивление заземления R3 <= 125/I<sub>3 Ом, но не более 4 Ом или 10 Ом.

В установках свыше 1000 В с большими токами замыкания на землю сопротивление заземляющего устройства не должно быть более 0,5 Ом для обеспечения автоматического отключения участка сети в случае аварии.

Зануление и защитное отключение

Зануление — это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Нулевой защитный проводник — проводник, соединяющий зануляемые части с нейтральной точкой обмотки источника тока или ее эквивалентом.

Зануление применяется в сетях напряжением до 1000 В с заземленной нейтралью. В случае пробоя фазы на металлический корпус электрооборудования возникает однофазное короткое замыкание, что приводит к быстрому срабатыванию защиты и тем самым — автоматическому отключению поврежденной установки от питающей сети. Такой защитой являются плавкие предохранители или максимальные автоматы, установленные для защиты от токов коротких замыканий; магнитные пускатели со встроенной тепловой зашитой; контакторы с тепловым реле и другие приборы.

При пробое фазы на корпус ток идет по пути В«корпус — нулевой провод — обмотки трансформатора — фазный провод — предохранителиВ». Ввиду того что сопротивление при коротком замыкании мало, сила тока достигает больших величин и предохранители срабатывают.

Назначение нулевого провода в электрической сети — обеспечить необходимую для отключения электроустановки величину тока короткого замыкания путем создания для этого тока цепи с малым сопротивлением.

Нулевой провод должен быть проложен так, чтобы исключить возможность обрыва; в нулевом проводе запрещается ставить предохранители, выключатели и другие приборы, способные нарушить его целостность. Проводимость нулевого провода должна составлять не менее 50% проводимости фазного провода. В качестве нулевых защитных проводников применяют голые или изолированные проводники, стальные полосы, алюминиевые оболочки кабелей, различные металлоконструкции зданий и др.

Контроль зануления электрооборудования производится при его приемке в эксплуатацию, а также периодически в процессе эксплуатации. Один раз в пять лет должно производиться измерение полного сопротивления петли В«фаза-нульВ» для наиболее удаленных, а также наиболее мощных электроприемников, но не менее 10% их общего количества.

Защитное отключение является частным случаем защитного зануления. В отличие от зануления, защитное отключение может применяться в любых сетях независимо от принятого режима нейтрали, величины напряжения и наличия в них нулевого провода.

Защитное отключение — это система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижении сопротивления изоляции, неисправности заземления или зануления). Защитное отключение применяется в том случае, когда трудно выполнить заземление или зануление, а также в дополнение к ним в некоторых случаях.

В зависимости оттого, что является входной величиной, на изменение которой реагирует защитное отключение, выделяют следующие схемы защитного отключения: на напряжение корпуса относительно земли; на ток замыкания на землю; на напряжение или ток нулевой последовательности; на напряжение фазы относительно земли; на постоянный и переменный оперативные токи; комбинированные.

Защитное отключение осуществляется при помощи автоматических выключателей, снабженных специальным реле защитного отключения. Время срабатывания защитного отключения — не более 0,2 с.

Во всем мире используется защита, основанная на соединении нетоковедущих проводящих частей оборудования с землей и заземленной нейтралью источника. В России эта система называется защитное зануление. Защитное действие этой системы основано на принципе достижения нулевого напряжения на корпусе прибора, за счет многократного заземления и соединения нетоковедущих частей с нейтралью источника.

Несмотря на ряд недостатков, зануление продолжает служить основным электрозащитным средством во всем мире. Открытые части установки соединяют отдельным нулевым защитным проводником.

Зануление – соединение металлических частей электрооборудования с нулевым защитным проводом. Зануление служит мерой защиты от случайного попадания под напряжение.

Защитное зануление рассчитано на случай короткого замыкания. Распределение нагрузки на предприятии осуществляется равномерно, нулевой провод исполняет функции защиты. Ноль соединяется с корпусом электродвигателя. Когда происходит короткое замыкание, то возникает напряжение на корпусе электродвигателя.

При этом происходит срабатывание автоматического выключателя. При применении заземляющей шины промышленные электроустановки соединяются.

Принцип действия

Замыкание случается при касании подключенного к напряжению фазного провода на корпус прибора, который соединен с нулем. Возникает большая сила тока, срабатывают аппараты защиты, отключающие питание неисправного прибора.

Время срабатывания защиты и отключения неисправной линии по правилам не должно быть более 0,4 секунды. Для зануления можно применить третью неиспользуемую жилу в кабеле для 1-фазной сети питания.

Фаза и ноль должны быть с небольшой величиной сопротивления. Только тогда аппарат защиты отключит напряжение в установленное время. Чтобы было хорошее зануление необходимо обеспечить качественные контакты соединений.

Защитное зануление дает возможность создать быстрое выключение от сети неисправного питания. Вероятность удара током человека практически исчезает. Зануление считается одним из видов заземления.

Порядок зануления

Зануление для защиты в доме начинается с нейтрали, соединенной с заземленной нейтралью трансформатора.

Нейтраль с 3-фазной линией приходит в здание дома в шкаф ввода. Далее, она разветвляется по щиткам на разных этажах. От нее используется рабочий ноль, образующий 1-фазное напряжение. Ноль имеет название рабочего, так как он применяется для работы.

Зануление для защиты создается отдельным нулем в щитке. Ноль соединен с заземленной нейтралью. Нужно знать, что в схеме соединения ноля с нейтралью не должно быть аппаратов коммутации (рубильников, автоматов).

Как известно в цепях трехфазного переменного напряжения обмотка трансформатора может соединяться в треугольник и в звезду. Рассмотрим звезду. Звезда имеет нулевую точку, или нейтраль. Это та точка, в которой сумма всех трех напряжений сети будет равна нулю.

При такой схеме трансформатора могут быть две возможные схемы. Схема с изолированной нейтралью показана на нашем рисунке. Такая схема обычно используется при работе трехфазных систем, а также однофазных систем, но используется именно изолированная нейтраль.

Также есть еще глухозаземленная нейтраль.

Нейтраль трансформатора соединяется с землей. Эта схема может быть использована не только для работы в трехфазной или однофазной системе, но также для защитного зануления.

Схема состоит из переменного источника напряжения 220 В, его датчика напряжения, нагрузки, сопротивления, которое в нормальном состоянии отключено. Но когда возникает пробой изоляции при выполнении неправильного монтажа, на корпусе появляется напряжение. Измерим напряжение на нагрузке относительно земли. Рассмотрим схему на базе однофазного источника напряжения.

Мы заземляем нулевую точку. Делаем имитацию пробоя изоляции на корпус. На корпусе установилось напряжение, которое будет равно напряжению источника. При таком состоянии если прикоснуться к корпусу, то человека ударит током. Как избежать этой ситуации? Все очень просто. Используют схему защитного зануления, а именно, корпус соединяют с глухозаземленной нейтралью трансформатора. Напряжение на корпусе становится равным нулю.

Почему опасно защитное зануление в квартире

Его используют для защиты людей и животных от поражения электрическим током, а также для срабатывания защитной аппаратуры в случае возникновения утечки тока на землю. Возникает вопрос: если мы используем глухозаземленную нейтраль, то можно соединить точку защитного заземления с нейтралью?

Этого делать нельзя. По правилам это запрещено. Если при выполнении монтажных работ будут перепутаны местами фаза и ноль, а мы поставим перемычку для соединения заземления с нейтралью, получим следующую неприятную ситуацию. При подключении устройства к сети, корпус оказывается под напряжением относительно земли. Как гласит ПУЭ использование нулевого рабочего проводника в качестве защитного зануления категорически запрещено.

Для защитного зануления отводится специальная шина, которая будет соединена с заземляющим устройством или с глухозаземленной нейтралью. Все заземляющие провода подключаются к этой шине параллельно. Поэтому, не нужно ставить перемычки. А перед тем, как реализовывать защитное заземление или зануление нужно ознакомиться с правилами.

Некоторые специалисты делают заземление приборов перемычкой клеммы ноля в розетке на контакт защиты. Такой способ запрещен.

На входе в квартиру устанавливают аппарат, служащий для подключения питания сети. Это может быть пакетный выключатель или автомат. Опасность самодельного заземления с помощью перемычки в том, что корпус устройства, подключенного к этой розетке, в случае повреждения изоляции нуля станет доступным напряжению фазы. А если оборвется провод нуля, то работа прибора прекратится. Возникнет ложная видимость провода, как обесточенного. Это опасно для жизни.

Такая розетка сделает много неприятностей, если в нее запитать стиральную машину. Если отгорит ноль, то стиральная машина может убить человека в случае прикосновения к ней.

Если человек принимает душ из электрического водонагревателя, а в это время нулевой провод в розетке отсоединится, то человека ударит током. Такое зануление очень опасно выполнять в квартире.

Применение зануления
Применяется в электроустановках до 1 кВ в:
  • Сетях постоянного тока со средней точкой заземления.
  • 1-фазных сетях с заземленным выводом.
  • 3-фазных сетях с заземленным нулем.

Защитное зануление служит для защиты от удара током. Если внутри электроприбора повредилась изоляция и корпус прибора оказался под током, то отреагирует защита и отключит сеть питания.

Образование тока КЗ возникает, если произошло замыкание нулевого и фазного провода на зануленный корпус. Для скорейшего отключения устройства применяют автоматы, предохранители, магнитные пускатели с защитой от перегрева, контакторы с реле.

Похожие темы:

РубрикаЭЛЕКТРОБЕЗОПАСНОСТЬ 1953 1953

Заземление – важная часть электрической системы, однако оно нужно далеко не везде. Зачем нужно заземление в розетке и что оно дает – читайте в публикации.

 

Определение понятия

Если сказать кратко и простыми словами, то:

image

Заземление – это устройство, которое защищает человека от поражения электрическим током, если всё электрооборудование соединено с землей. В аварийной ситуации опасное напряжение «стекает» на землю.

Защита – основное назначение заземления. Оно заключается в подключении дополнительного, третьего заземляющего проводника в проводку, который соединен с таким устройством, как заземлитель. Он, в свою очередь, имеет хороший контакт с землей.

Заземление бывает рабочим и защитным по назначению. Рабочее нужно для нормального функционирования электроустановки, защитное нужно для обеспечения электробезопасности (предотвращения поражения электрическим током).

image

Обычно заземление (заземлитель) выглядит как три электрических прута вбитых в землю, на одинаковом расстоянии друг от друга, расположенных в углах равностороннего треугольника. Эти пруты соединены между собой металлической полосой. Вы могли видеть такие пруты около домов и сооружений.

Также вы могли заметить, что на стенах многих зданий внутри или снаружи закреплены металлические полосы, иногда выкрашенные желтыми и зелеными чередующимися полосами – это заземляющая шина, она тоже соединена с заземлителем. Заземляющая шина нужна для того, чтобы не тянуть от каждой электроустановки заземляющий провод.

Третий проводник обычно соединяется с корпусом электрических приборов, обеспечивая защиту от появления на нем опасного напряжения. В кабелях он обычно имеет меньшее сечение, чем соседние «рабочие» жилы и другой цвет изоляции – желто-зеленый.

Требования к заземлению

Требования к защитному заземляющему контуру заключаются в следующем:

  1. Заземлены должны быть все электроустановки, в том числе металлические дверцы электрошкафов и щитов.
  2. Сопротивление заземляющего устройства не должно превышать 4 Ом в электроустановках с заземляющей нейтралью.
  3. Необходимо использовать системы уравнивания потенциалов.

Мы разобрались что такое заземление, теперь поговорим о том для чего оно нужно.

Почему человека бьёт током

image

Рассмотрим две типовых ситуации, когда вас бьет током:

  1. Стиральная машинка исправно выполняла свою работы, а когда вы захотели её отключить – почувствовали, что её корпус «щипает» вас. Или еще хуже, когда вы к ней прикоснулись – вас серьезно «дёрнуло».
  2. Вы решили принять ванну, включили воду, взявшись за кран, вы почувствовали такое же действие электричества – пощипывание или сильный удар.

И та и другая ситуация решается подключением заземления к корпусам приборов и всех металлических частей в ванной комнате и установкой УЗО или дифференциального автомата на вводе электроэнергии в дом или на группу потребителей.

Как работает заземление

Для начала разберемся, почему на корпусе стиральной машинки или другого электрооборудования появилось опасное напряжение. Всё достаточно просто – изоляция проводников по какой-то причине испортилась или повредилась и поврежденный участок касается металлического корпуса какой-то из деталей оборудования.

Если у вас нет заземления или зануления корпус поврежденного устройства для электрической цепи ничего собой не представляет, пока вы его не коснетесь, конечно. Вы подходите к прибору, стоите на полу, пол имеет хоть и слабый, но какой-то контакт с землей. При прикосновении к корпусу ток начинает протекать через вас в землю. Для протекания тока нужна разность потенциалов, а потенциал фазного провода всегда больше потенциала земли. Получается, что вы замыкаете фазный провод на землю своим телом.

Для человека опасны даже такие маленькие значения как 50 мА – такой ток может привести к фибрилляции желудочков сердца и смерти.

Так вот принцип работы заземления заключается в следующем: к заземлителю подключаются корпуса всех электроприборов, дополнительно устанавливается УЗО. В случае возникновения опасного напряжения на корпусе заземление всегда притягивает опасный потенциал к безопасному потенциалу земли и напряжение «стекает» на заземление.

Для чего применяются УЗО и дифавтоматы

Простое заземление устройств – это хорошо, но еще лучше обеспечить дополнительную защиту. Для этого придумали устройство защитного отключения (УЗО) и дифференциальные автоматы.

Дифавтомат – это устройство, которое в своём корпусе объединяет УЗО и обычный автоматический выключатель, так вы сэкономите место в электрощите.

УЗО – реагирует только на токи утечки. Принцип его работы такой: оно сравнивает количество тока через фазный и через нулевой провод, если часть тока утекла на землю, то оно моментально реагирует, отключая цепь. Их отличают по чувствительности от 10 до 500 мА. Чем чувствительнее УЗО, тем чаще оно будет срабатывать, даже при незначительных утечках, но не стоит устанавливать слишком грубое УЗО для дома.

Принцип работы защищенной цепи простым языком:

Когда на корпус заземленного электрооборудования попадает фаза, между фазным проводом и корпусом начинает протекать ток. Тогда УЗО замечает, что по фазному проводу прошел ток, часть тока куда-то делать и по нулевому проводу вернулся меньший ток, после чего эта цепь обестачивается. Так вы защищены от удара током.

Если установить УЗО в двухпроводной электроцепи без заземляющего проводника и где-то появится возможность утечки тока, оно сработает только после того как вы коснетесь этого места и ток утечет на землю через вас. В таком случае вы тоже будете в безопасности.

Все действия описанные в данной статье, можно выполнить и самому, но, как мы уже говорили, будет лучше, если их произведут квалифицированные электрики, которые знают все правила проведения монтажных работ, а также технику безопасности  

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий